

#### The Future of Energy

LITT

#### KIS lecture 08-11-2023

Dr. Mark Boneschanscher, managing director EIRES

www.tue.nl/eires | eires@tue.nl

#### **Overview of this lecture**

- The energy transition: where do we stand?
- Towards a future energy system: dot on the horizon
- EIRES: renewable energy research at TU/e
- Deep dive on 3 topics
  - Hydrogen
  - Metal fuels
  - Heat
- Wrap up & conclusions



#### The energy transition: where do we stand?



## The energy transition: where do we stand?

World consumption Share of global primary energy Exajoules 700 40% 35% 600 30% 500 25% 400 20% 300 15% 200 10% 100 0 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022 Coal Natural das Nuclear energy Oil \_\_\_\_ Oil --- Coal --- Natural gas Nuclear energy Renewables Hydroelectricity --- Hydroelectricity --- Renewables

Energy Institute Statistical Review of World Energy 2023

4 KIS lecture 08-11-2023 1 exajoule = 278 TWh = 163 Mboe = 26.5 Gm<sup>3</sup> NG



#### **Energy consumption visualized**





### Or closer to home: personal energy consumption

1,25 kg coal



#### Per person in NL per day\*

\* Excluding the 2.5l oil pp for international marine and air transport

TU/e

4,5 l oil





#### 5,5 m<sup>3</sup> nat. gas

## What do we use the energy for?

THE DUTCH ENERGY SYSTEM: FROM PRIMARY DEMAND TO FINAL DEMAND



EIRES EINDHOVEN INSTITUTE FOR RENEWABLE ENERGY SYSTEMS

7 KIS lecture 08-11-2023

## The consequence





8 KIS lecture 08-11-2023

#### Why we should care





M. Blom-Zandstra et al., doi:10.1088/1755-1315/8/1/012018



#### **Russian invasion as terrible wake-up call**

• EU and NL dependance on energy import



#### THE IMPORT GAP OF THE NETHERLANDS



EBN 2023

20

2000

Europ 0

Geothermal • Hydropower • Wind • Solar Russian imports (natural gas, oil and coal) 
 OLNG (other than Russian) -Primary demand

## **Renewable energy brings its own challenges**

#### Supply and demand: mismatch in time and place





Renewables need flexible backup, not baseload

Estimated power demand over a week in 2012 and 2020, Germany Source: Volker Quaschning, HTW Berlin



Transport, conversion, and storage of energy is key!

## **Current infrastructure is not prepared**

- NL as testcase for the world
- Rapid increase solar and wind



Capaciteitskaart afname elektriciteitsnet Bijgewerkt: 18-10-2023 13:51



O transport capacity available

- Iimited transport capacity
- o no transport capacity, congestion mgmt. res. pending
- no transport capacity, no congestion mgmt. possible
- congestion mgmt. actions taken, limited possibilities
- congestion mgmt. actions taken, limit reached

Capaciteitskaart invoeding elektriciteitsnet Bijgewerkt: 18-10-2023 13:51



Netbeheer Nederland 2023



#### Towards a future energy system: dot on the horizon



# The future energy system: dynamic and complex

The energy system today: linear and wasteful flow of energy, in one direction only

The future integrated energy system: energy flows between user and producers, reducing wasted resources and money



- A more efficient and decentralized system, where waste energy is captured and re-used
- A cleaner power system, with more direct electrification of end-use sectors such as industry, heating of buildings and transport
- A cleaner fuel system, for hard-to-electrify sectors such as heavy industry or transport (aviation and marine)

#### Speeding up technology development by granularity



C Wilson et al., Science 368, 6486 (2020)



# The role of granularity

Benefits of modular technologies:

- Rapid market penetration, steep learning curves
- More efficient, less complex, less risk of lock-in
- Broader accessible, more jobs per installed capacity, higher social return on public R&D

ightarrow Our USP – modular scaling is Brainport DNA



16 KIS lecture 08-11-2023

# The role of gra

#### Benefits of modular

- Rapid market penetral
- More efficient, less cor
- Broader accessible, mo • capacity, higher social re

 $\rightarrow$  Our USP – modular scali

17

and DA KIS lecture 08-11-2023

HOW



## Organizing our future energy system in a granular way



#### **EIRES:** renewable energy research at TU/e



# EIRES

#### Origin

- Opened 31/08/2020 by Secretary of State I&W
- Signing of MoU with VDL

#### Tasks

- Bring together TU/e researchers from various disciplines and departments on *renewable energy systems*
- Forster excellence in (team) research on the Energy Transition with the aim to accelerate it
- Develop challenge-based programs both bottom & top down, in strong connection with industry and society



OAY 2020

#### **Key numbers**



Semi virtual

140 researchers + 400 PhD students

EIRES building on campus for collaboration & meetings

Incubator for student teams & startups



#### M€ 2,5/y funding by TU/e

Talent, infrastructure, seed money Total contract value of ~M€ 35/y >2 startups per year

#### Some startup successes last year

- Carbyon winner of XPRIZE milestone award
- RIFT selected as Breakthrough Energy Fellow
- Cellcius received Breakthrough Energy Explorer Grant









## **Organization of EIRES**

Organization via four focus areas:

- Proven scientific excellence
- Unique research infrastructure
- Iconic projects with societal partners

# Energy Generation &<br/>StorageGreening the Process<br/>IndustryEnergy Transition in<br/>the Built EnvironmentSystem Transition &<br/>Scenarios

## **Energy Generation & Storage**

- Focus on materials and interfaces for energy generation, conversion, and storage
- Examples: PV, batteries, metal fuels, fuel cells, fusion



## **Greening the Process Industry**

- Focus on processes for energy conversion
- Examples: (electro)catalysis, electrification of industrial heat, small-scale chemical reactors
- Typical partners:

Nouryon







undamental research projects







Institute for Sustainable

Process Technology







## **Energy Transition in the Built Environment**

- Focus on devices and systems needed for the energy transition in the built environment
- Examples: district heat networks, heat pumps, insulation & renovation, net congestion
- Typical partners:











#### **System Transition & Scenarios**

- Focus on system-of-systems modelling of our future energy system
- Examples: dynamic models, digital twins, transition scenarios, just transition



#### **Deep dive: Hydrogen**





#### Green hydrogen has an important role to play

- $\rightarrow$  Storage, conversion and transport of RE is key: H<sub>2</sub> in most cases first step
- → Boundary conditions: the availability of green electricity & electrolyzer development



USD/kgH<sub>2</sub> <= 1.6 1.6 - 1.8 1.8 - 2.0

2.0 - 2.2

#### **Electrolyzers development: current status**

|                                     | Alkaline                             | PEM                      | Solid oxide                       | AEM                                       |
|-------------------------------------|--------------------------------------|--------------------------|-----------------------------------|-------------------------------------------|
|                                     |                                      |                          |                                   | AESSOR                                    |
| Stack size (MW)                     | 1-6                                  | 0.5 – 2.5                | 0.01                              | 0.0025                                    |
| Largest operational<br>factory (MW) | 150<br>Ningxia (China)               | 20<br>Bécancour (Canada) | 0.72<br>Salzgitter<br>(Duitsland) | 0.02<br>Rozenburg<br>(Netherlands)        |
| # suppliers                         | 9                                    | 4                        | 2                                 | 1                                         |
| Strengths                           | Cheap material and proven technology | Compact and flexible     | Efficient                         | Combines strengths of<br>Alkaline and PEM |
| Weaknesses                          | Less efficient (<70%)                | Requires Iridium         | Thermo-mechanical challenging     | Early phase                               |

# Thus, H2 usage needs to be prioritized

#### Unavoidable



→ Chemical reagent >> long-distance transport >> local fuels/short term use



#### The Netherlands is taking a frontrunner role on H2



32 KIS lecture 08-11-2023



#### But whether H<sub>2</sub> will be a long-distance energy *carrier* is still to be decided



LCOE for high temperature heating applications in Moerdijk (NL) with

KIS lecture 08-11-2023

33

#### **Deep dive: Metal fuels**



## The quest for the ideal energy carrier/storage medium



- Batteries are fine for small scale (e-mobility)
- Hydrogen has very low energy density per volume
- Hydrocarbons are great ... but result in CO2 emissions
- Metals are CO2 free, quite heavy, but high volumetric energy density, and very suited for large-scale longterm storage or long-distance transport

Hydrogen

as @700bar

H2 gas

Light

LH2

120



## **Focus on Iron Fuel**

- Iron has temperature & time scales similar to fossil fuels
- Potential for retrofitting solid fuel systems like coal fired power plants





#### Iron fuel as energy carrier for high T process heat



 $4 \text{ Fe} + 3 \text{ O}_2 \rightarrow 2 \text{ Fe}_2 \text{ O}_3$ 

TU/e

EINDHOVEN INSTITUTE FOR RENEWABLE ENERGY SYSTEMS

#### Iron fuel as energy carrier for on site H2 production





TU/e

## Status of the technology: combustion

• Demonstrations at 100 kW scale at Bavaria, at 200 kW scale in Metalot, at 1 MW scale in Helmond at Ennatuurlijk







Courtesy: Philip de Goey, Metalot, Krols Media, RIFT metalot



## Status of the technology: reduction

• Regeneration in fluidized bed and rotating drum setups up till 50 kW scale





D

metalot

Courtesy: Philip de Goey, Metalot, RIFT



## Status of the technology: IRHYS

• Proof of concept, storage up to 1 kg H<sub>2</sub> (eq to 33 kWh energy)



TU/e

# Key challenges in moving forward

- Hydrogen price for regeneration (!)
- Combustion technology: recovery rate and conversion efficiency
- Reduction technology: conversion efficiency and throughput (from batch to continuous processes)
- IRHYS: technology development in general, early stage
- Iron fuel itself: powder quality over multiple oxidation/reduction stages
- Market penetration: development of ecosystems, interdependence oxidation & reduction demand, transport infrastructure







#### Deep dive: Heat



### Heat – *the* ET challenge in the built environment

- Heat demand in the built environment is responsible for >50% of direct gas use in NL.
- Geothermal heat as potential solution is not new: was used in Roman times (Aquae Sulis
  → Bath, UK). And since last century for power as well.





The Imperial Valley Geothermal Project near the Salton Sea, California. Photo by Jack Catalano

TU/e

INDHOVEN INSTITUTE

# Potential and challenges of geothermal energy

- Potential of geothermal energy is to supply ~25% of NL heat demand and ~50% of heat demand of our greenhouses.
- With the current net congestion and public ban of biomass many RES regions are looking towards geothermal as a potential heating source.
- However, there are challenges related to
  - Economics: high capex, difficult to fund survey and equipment, failure rate
  - Sustainability: risk of depletion, emissions of CO<sub>2</sub>, H<sub>2</sub>S, CH<sub>4</sub>, NH<sub>3</sub>
  - Seismic activity: next to (limited) real risks also risks in public perception



#### Potential and challenges of using waste heat

- At the same time we cool away 125 PJ industrial waste heat of >100 °C (eq. 4 Gm<sup>3</sup> NG, or heating for >3 million houses).
- But feeding in waste heat in district heat networks requires large infrastructural investments, and security of supply may be an issue in this transition.
- Unless you can provide heat-as-a-service (HaaS)...





## **Requirements for HaaS**

- Low cost solution: heat is a commodity
- High energy density for small footprint and/or low-cost transport
- Low loss storage (during transport)







# **Technology challenges**

- Power high capacity but low power
- Cyclic stability of the composite
- Upscaling industrial production









#### Courtesy of [Cellcius]



#### Wrap up & conclusions



# Conclusion (1/4)

- Energy transition requires rapid acceleration and radical system change
- Key challenge is the transport, conversion, and storage of energy







# Conclusion (2/4)

- Modular scaling and a holarchic lay out of the energy system provide acceleration pathways
- EIRES organizes TU/e energy research on this philosophy and on key research strengths



# Conclusion (3/4)

- Hydrogen will play a large role in the transition, but will remain scarce in the foreseeable future
- Iron pow(d)er provides an interesting alternative route for long-duration storage and long-distance transport





EINDHOVEN INSTITUTE FOR RENEWABLE

ENERGY SYSTEMS

# Conclusion (4/4)

- Heat has long been the overlooked factor in the ET but is gaining increasing attention
- Geothermal heat has a lot of potential given the net congestion problems and public ban on biomass
- Thermochemical heat storage is a promising new technology for heat-as-aservice







#### EIRES EINDHOVEN INSTITUTE FOR RENEWABLE ENERGY SYSTEMS



#### **DRIVING THE ENERGY REVOLUTION**

**Questions or remarks?** 

more info: www.tue.nl/eires | eires@tue.nl